

NASA-DoD Workshop on Quantum Imaging and Metrology Pasadena, CA, November 14–15, 2002

Spatially Broadband Parametric Amplification: Quantum-Noise Correlations and Noiseless Amplification of Images

Prem Kumar

Center for Photonic Communication and Computing ECE Department, Northwestern University, Evanston, IL 60208-3118 Tel: (847) 491-4128; Fax: (847) 467-5319; E-mail: kumarp@northwestern.edu

Outline:

- Quantum-limited sensitivity of imaging
- Parametric image amplification
- Spatial bandwidth of parametric amplification
- Quantum-noise correlations in image amplification
- Noiseless image amplification
- Potential for applications

Collaborators:

- Sang-Kyung Choi
- Michael Vasilyev
- Michael I. Marable

Supported in part by:

Office of Naval Research

Applications of Quantum OPAs: Quantum-Limited Sensitivity of Imaging

Amplitude Objects:

Spatially white shot noise $\propto \frac{1}{|\alpha|^2}$

Phase Objects:

- M. I. Kolobov and P. Kumar, "Sub-shot–noise microscopy: Imaging of faint phase objects with squeezed light," Opt. Lett. 18, 849 (1993).
- P. Kumar and M. I. Kolobov, "Four-Wave Mixing as a Source for spatially broadband squeezed light," Opt. Commun. 104, 374 (1994).

Amplification & Imaging

Noiseless amplification:

•coherent light parametric downconversion

phase-sensitive amplifier (PSA)

light with

amplified amplitude

squeezed phase

 noise performance of PSA is better than quantum limit of phase-insensitive amplifier (PIA) (Kimble, 1993; Levenson, 1993)

Parametric imaging:

- parametric up-conversion of infrared images
 (Midwinter, 1968; Firester, 1969; Andrews, 1970)
- parametric amplification of images (Fainman, 1986; Laferriere, 1989; Devaux, 1995)

Motivation:

 Utilize phase-sensitive optical parametric amplifier (OPA) to improve imaging better amplifier noise figure (NF) better detection sensitivity

Potential applications:

- Enhancement of time-gated image recovery
 (Faris, 1994; Brun, 1995; Cameron, 1996; Lantz, 1997)
- Enhancement of faint images

Spatially Broadband OPA& Phase Matching

 $\Delta k_{eff} \approx 0$ for $q < q_{max} \approx (k_p / length)^{1/2}$

Setup for Parametric Image Amplification

Object Plane

Image Plane

3-Slit Object for Imaging

16 lines/mm

$$d = 2 a = 62.5 \mu m$$

Element 4.1

Fourier transform of 3 slits:

$$I = I_0 \left(\frac{\sin \alpha}{\alpha}\right)^2 \left(\frac{\sin 3\beta}{\sin \beta}\right)^2$$

$$\alpha$$
 = 0.5 k a sin θ

$$\beta = 0.5 \,\mathrm{k} \,\mathrm{d} \sin \theta$$

$$q = 2\pi\xi$$

$$\longrightarrow I(\xi) = I_0 \left(\frac{\sin \pi a \xi}{\pi a \xi}\right)^2 \left(\frac{\sin 3\pi d \xi}{\sin \pi d \xi}\right)^2$$

Parametrically Amplified Images

Object Plane

16 lines/mm

Image Plane

bare amplified idler signal

Fourier Plane

Bare Signal

USAF Test Pattern

Amplified Signal (Low-Pass OPA)

Amplified Signal (Band-Pass OPA)

Correlated Twin Beams

Setup for Noise Measurements

Top View of the Layout

Amplified Signal / Idler

Images for Noise
Measurements

Spatially Broadband OPA Theory

Parametric gain: phase-insensitive gain $G_{PIA} = |\mu|^2$

phase-sensitive gain
$$G_{PSA} = 2G_{PIA} - 1 + 2\sqrt{G_{PIA}(G_{PIA} - 1)}$$

Twin beam noise reduction: $R = \frac{\eta}{|\mu|^2 + |\nu|^2} + 1 - \eta$

$$\mu = \left[\cosh(hl) + \frac{i\Delta k_{eff}}{2h}\sinh(hl)\right] \exp(-\frac{i\Delta k_{eff}l}{2})$$

 η = quantum efficiency

$$v = -\frac{ig}{2h}\sinh(hl)\exp(-\frac{i\Delta k_{eff}l}{2})$$

$$h = \frac{1}{2} \sqrt{|g|^2 - \Delta k_{eff}^2}$$

 $g \propto (pump intensity)^{1/2}$

$$\Delta k_{eff} = k_p - k_s - k_i + \frac{q^2}{2} \left(\frac{1}{k_s} + \frac{1}{k_i} \right)$$

l = length of nonlinear crystal

ref.: A. Gavrielides, P. Peterson, and D. Cardimona, J. Appl. Phys. **62**, 2640 (1987).

Spatially-Broadband OPA: ^ Spatial Spectra of Gain and Noise Reduction

Low-Pass Configuration

Band-Pass Configuration

Temporal Pulse Profiles

Mean Field Intensities

Noise Power

Twin-Beam Noise Reduction vs. OPA Gain

M. L. Marable, S-K. Choi, and P. Kumar, Optics Express 2, 84–92 (1998).

Twin-Beam Noise Reduction vs. Δk

M. L. Marable, S-K. Choi, and P. Kumar, Optics Express 2, 84–92 (1998).

Amplification of Coherent Light Input

Measurement of Spatial Bandwidth of OPA

- Layout for noncollinear twin beam noise reduction measurement
- •Spatial bandwidth found by measuring G_q of signal at fixed G_0 for objects of various resolution

Measurement of Spatial Bandwidth of OPA

- Spatial transfer function, that is, amplified signal vs. spatial frequency
- $G_0 = 2$ in 5 mm KTP crystal

- Gain at various spatial frequencies with fixed gain for 0th component
- $G_0 = 2$ in 5 mm KTP crystal

Layout for Noiseless Image Amplification

S.-K. Choi, M. Vasilyev, and P. Kumar, *Phys. Rev. Lett.* **83**, 1938 –1941 (1999).

Spatial Profiles of 1-d Image

- 2-slit object magnified x24 and then compressed in one dimension
- Spatial profiles scanned by photodetector in horizontal direction
- Red squares bare profile; Blue squares PSA profile
- 3.25 mm KTP crystal

S.-K. Choi, M. Vasilyev, and P. Kumar, *Phys. Rev. Lett.* **83**, 1938 –1941 (1999).

Amplifier Noise Figure

DC gain vs. 27 MHz gain

Experimental NF_{amp+loss}

$$= \frac{1}{\eta} \frac{\text{(27 MHz gain)}}{\text{(DC gain)}^2}$$

• NF_{amp+loss} = NF_{amp}
+
$$(1-\eta)/(\eta G)$$

•PIA SNR_{out} =
$$\frac{\eta G}{2 \eta G + 1 - 2 \eta}$$
 SNR_{in}

$$NF_{amp+loss} = 2 + \frac{1}{\eta G} - \frac{2}{G}$$

•PSA SNR_{out} =
$$\frac{\eta G}{\eta G + 1 - \eta}$$
 SNR_{in}

$$NF_{amp+loss} = 1 + \frac{1 - \eta}{\eta G}$$

PSA gain G = 2.5-2.6 Quantum eff. $\eta = 0.82$

NF _{amp+loss}	3.25mm KTP	5.21mm KTP
PSA Exp.	1.05 ± 0.1	1.10 ± 0.1
@ peaks	$0.2 \pm 0.6 \text{ dB}$	$0.4 \pm 0.5 dB$
PSA	1.1	1.1
Theory	0.4 dB	0.4 dB
PIA	1.7	1.7
Theory	2.3 dB	2.3 dB

Conclusions

Quantum Noise Correlations In Image Amplification

- Observation of quantum noise reduction in non-collinear twin beams
 5 dB below the shot-noise level
- Good agreement with theory of spatially-broadband OPA
- Bandpass OPA selects spatial frequency for amplification

Noiseless Image Amplification

- Spatially broadband noiseless image amplification PSA gain \cong 2.5 and NF_{amp} \cong 0 dB at peaks of amplified 2-slit image
- Improvement of detected SNR due to pre-amplification before loss $NF_{amp+loss} \cong 0.2\text{-}0.4 \ dB < NF_{bare+loss} \cong 0.9 \ dB$